Laser-Driven Aerosol Synthesis of Nickel Nanoparticles

نویسندگان

  • Yuanqing He
  • Xuegeng Li
  • Mark T. Swihart
چکیده

Nanoparticles of nickel have been prepared by laser-driven decomposition of nickel carbonyl. In this method, an infrared laser rapidly heats a dilute mixture of nickel carbonyl and a photosensitizer in a carrier gas to decompose the precursor and initiate particle nucleation. To produce nickel nanoparticles, nickel carbonyl was generated in situ from activated nickel powder and CO at room temperature, so that we never maintained any inventory of this highly toxic compound. During the synthesis process, laser heating allows for rapid cooling of the freshly nucleated particles by mixing with unheated gas. By varying the precursor flow rate, laser energy, and unheated gas flow rate to change the residence time, precursor concentration, and reaction temperature, the average particle size can be controlled over a range of primary particle diameters from 5 to 50 nm. The particle size and crystalline structure have been characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen physisorption surface area measurement (the BET method), and X-ray photoelectron spectroscopy (XPS). Results of magnetization measurements for small superparamagnetic nickel nanoparticles (about 8-nm diameter) are also presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An aerosol-mediated magnetic colloid: Study of nickel nanoparticles

A method is presented for the synthesis of high-quality nickel nanoparticles. Laser-driven decomposition of nickel carbonyl vapors is used to produce particles in the form of an aerosol, followed by exposure to a solvent containing an appropriate surfactant to yield a stable dispersion of particles. This method is scalable and yields a substantially monodisperse distribution of particles at a r...

متن کامل

Green Synthesis of Metal nanoparticles by microorganisms; a current prospective

Synthesis and applications of nanomaterials has been an interesting area of nanotechnology since last decade. Several physico-chemical methods have been used to synthesize the nanoparticles of noble metals. Numerous other methodologies are also in practice including the laser ablation, aerosol technologies, lithography, and ultraviolet irradiation.  However, traditional methods are less preferr...

متن کامل

Solid state synthesis of NiO nanoparticles from [(1,2-bis(2-formyl-3-methoxyphenyl)propane)nickel(II)] chloride

In this paper, nickel oxide (NiO) nanoparticles have been prepared by solid state thermal decomposition of an acyclic nickel(II) complex (1,2-bis(2-formyl-3-methoxyphenyl)propane)nickel(II) chloride, [NiL]Cl2, in an electrical furnace at optimal temperature, 450 ºC for 3.5 h. The nickel(II) complex is obtained via solid state synthesis using nickel(II) chloride and tetradentate O4 acyclic ligan...

متن کامل

Synthesis of Nickel/ Molybdenum Oxide Bimetallic Nanoparticles via Microwave Irradiation Technique

   Nickel-molybdenum oxidebimetallic nanoparticles were synthesized in ethylene glycol using the microwave irradiation technique. According to the results, successive reduction of nickel and molybdenum ions, followed by thermal treatment of obtained nanoparticles led to formation of core-shell structured nickel-molybdenum oxide nanoparticles. According to the results, the thickness of the s...

متن کامل

Synthesis and Characterization of Nickel Zinc Ferrite Nanoparticles

In this research nickel zinc ferrite nanoparticles with composition of Ni1-xZnxFe2O4 (where x=0, 0.3, 0.7, 1) were synthesized by a sol-gel method at 600 °C for 5 hours. The structure of nanoparticles was studied using X-ray diffraction pattern. The lattice parameter of ferrite nanoparticles was calculated and indicates lattice constant of nanoparticl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005